A Topological Existence Proof for the Schubart Orbits in the Collinear Three-body Problem

نویسندگان

  • RICHARD MOECKEL
  • Carles Simó
چکیده

A topological existence proof is presented for certain symmetrical periodic orbits of the collinear three-body problem with two equal masses, called Schubart orbits. The proof is based on the construction of a Wazewski setW in the phase space. The periodic orbits are found by a shooting argument in which symmetrical initial conditions enteringW are followed under the flow until they exit W. Topological considerations show that the image of the symmetrical entrance states under this flow map must intersect an appropriate set of symmetrical exit states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Assisted Existence Proofs of Lyapunov Orbits at L2 and Transversal Intersections of Invariant Manifolds in the Jupiter-Sun PCR3BP

We present a computer assisted proof of existence of a family of Lyapunov orbits which stretches from L2 (the collinear libration point between the primaries) up to half the distance to the smaller primary in the Jupiter-Sun planar circular restricted three body problem. We then focus on a small family of Lyapunov orbits with energies close to comet Oterma and show that their associated invaria...

متن کامل

Periodic orbits Near a heteroclinic Loop formed by One-Dimensional Orbit and a Two-Dimensional Manifold: Application to the charged Collinear Three-Body Problem

The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collin...

متن کامل

Periodic Orbits of a Collinear Restricted Three Body Problem

In this paper we study symmetric periodic orbits of a collinear restricted three body problem, when the middle mass is the largest one. These symmetric periodic orbits are obtained from analytic continuation of symmetric periodic orbits of two collinear two body problems.

متن کامل

Connecting Orbits and Invariant Manifolds in the Spatial Three-Body Problem

The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold tubes associated to libration point orbits are the phase space conduits transporting material between primary bodies for separate three-body ...

متن کامل

The n - Centre Problem of Celestial Mechanics for Large Energies

We consider the classical three-dimensional motion in a potential which is the sum of n attracting or repelling Coulombic potentials. Assuming a non-collinear configuration of the n centres, we find a universal behaviour for all energies E above a positive threshold. Whereas for n = 1 there are no bounded orbits, and for n = 2 there is just one closed orbit, for n ≥ 3 the bounded orbits form a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006